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Abstract. This paper introduces Dirac DSL: a domain specific lan-
guage and its implementation for the Rust programming language built
with procedural macros. Dirac DSL performs compile-time preparation
of quantum states with an input in Dirac-like notation. Such state prepa-
ration is useful when performing classical simulations of small quantum
systems. Dirac DSL provides a few advantages over standard Rust nota-
tion when writing classical quantum simulations: a familiar Dirac bra-ket
syntax available through ergonomic macros, a runtime of O(1) (no run-
time copy) or O(n) relative to the length of the prepared quantum state
tensor (runtime copy), and an extensible compile-time to runtime in-
terface that can translate the compile-time result to arbitrary runtime
tensor formats. We perform a brief qualitative analysis of the currently
available Rust quantum system simulation libraries and inspect simi-
lar projects in other languages to provide some context and understand
the state of the art for macro-based DSLs in quantum state manipula-
tion. We then provide a brief introduction to Dirac notation and present
the syntax, semantics and implementation details of the dirac! and
xdirac! macros used in the Dirac DSL. Finally, we also perform a bench-
mark of the implementation. Source code for reproduction is published
at https://github.com/felipetavares/dirac/.
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1 Introduction

Even though a literature review [6] shows that Python, Julia, MATLAB, and
C/C++ are the usual classical languages used in the field of quantum comput-
ing simulation, with Python libraries such as QuTip [8], Strawberry Fields [10]
and TensorFlow Quantum [3] being extremely widespread paired with Jupyter [9]
notebooks, Rust [18] is still an interesting alternative choice for quantum simula-
tion projects with a large classical stack due to its excellent software engineering
qualities: a strong type system, lower likelihood of memory management bugs,
embedded hardware support, among others. These qualities were well explored
in its use building the Servo web engine [1].

A review of all projects with descriptions or names matching the keyword
quantum on crates.io [15], the open repository for Rust packages, finds several
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quantum simulation and quantum computing crates, the most prominent one
being qoqo [14]. However, all the available libraries rely on the preparation of
quantum states by adapting the usual quantum mechanics Dirac notation to op-
erations on state vectors initialised at runtime following standard Rust notation.

As demonstrated by the analysis of MATLAB vs. Python in [11], where
the former has a strong foothold in all areas of engineering due to the famil-
iar notation when dealing with algebraic calculation and the later providers a
developer-friendly experience, both aspects are valuable but developer experi-
ence is paramount. Hence, when designing scientific domain specific languages, a
tight integration with a developer friendly host language can provide the needed
developer experience benefits.

We propose introducing a domain specific language to Rust, Dirac DSL,
balancing developer experience and domain notation by using Rust as a host
language while plugging in the quantum mechanics Dirac notation through the
use of compile-time Rust macros. This is a similar approach to the one used by
the SQLx library [13] for integrating SQL queries and the Rust language through
the query! macro.

A similar strategy was adopted by the Julia Quantum project [12] with the
QuDirac.jl library, which also uses macros to perform computations on quan-
tum states but differently from the approach we propose, and due to the im-
plementation on the Julia language, it focuses on providing a dynamic macro
system that is used to compute quantum states at runtime and not on preparing
quantum states at compile time.

1.1 Dirac Notation

The Dirac DSL implementation focuses on a subset of the Dirac notation [2]
used by most quantum mechanics texts. It features the use of angular brackets
⟨, ⟩ paired with vertical bars | to represent vectors in Cn and commonly used
operations.

Bra-kets The most important element of Dirac notation is the ket, which rep-
resents the quantum state of a log2 n qubit system or register:

|v⟩ =


v1
v2
...
vn


Similarly, a bra is constructed as:

⟨v| = |v⟩† =
[
v∗1 v

∗
2 . . . v

∗
n

]
Where ∗ is the complex conjugate operator.
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Kronecker Product A n-qubit ket can also be constructed from the n indi-
vidual states of its qubits when they are separable:

|b1b2 . . . bn⟩ = |b1⟩ ⊗ |b2⟩ ⊗ · · · ⊗ |bn⟩

Where |bi⟩ is one of the following well known states:

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
|+⟩ = 1√

2

[
1
1

]
|−⟩ = 1√

2

[
1
−1

]

Inner and Outer Products Inner or dot products represent the projection
between a bra and a ket of the same dimension n resulting in a scalar:

⟨ψ|φ⟩ = ψ1φ1 + ψ2φ2 + · · ·+ ψnφn

The outer product is just the tensor product of a ket and a bra, with dimen-
sions m and n:

|φ⟩⟨ψ| =


φ1ψ1 φ1ψ2 . . . φ1ψn

φ2ψ1 φ2ψ2 . . . φ2ψn

...
...

. . .
...

φmψ1 φmψ2 . . . φmψn


Element-wise Operations Element-wise algebraic vector operation on bra-
kets (addition and subtraction) and scalar operations follow standard algebraic
notation:

|φ⟩ ± |ψ⟩ |ψ⟩
c

c|ψ⟩ c± |ψ⟩

Where c is a scalar.

Norm The notation for norms is also standard:

∥ |ψ⟩ ∥

1.2 Function-like Procedural Macros

The Rust language has several types of compile-time macros: operations that
transform code before compilation. One of those is function-like macros [17]:
they are applied by emulating the syntax of a function call and are implemented
as a mapping function between an input stream of Rust tokens (a TokenStream)
and an output stream of tokens. The mapping is arbitrary and allows full access
to all features of the Rust language in its implementation (see Listing 1).

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


This work is licensed under a Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” license.

4 Felipe Tavares

#[proc_macro]
pub fn function_like_macro(input: TokenStream) -> TokenStream {

/* implementation */
}

Listing 1: Function-like macros in Rust map from a TokenStream to a
TokenStream.

2 Dirac DSL

The Dirac DSL implemented in this paper is a mapping of Dirac notation into
ISO 8859 [7] characters, which are a subset of the characters available for Rust
macros [16]. We follow a bottom up approach to defining the DSL grammar infor-
mally, then expand to a formal EBNF (Extended Backus-Naur Form) grammar
for each group of syntactical constructs.

2.1 Atoms

Atoms are used to represent all the building blocks for operations. This includes:
bra-kets, complex numbers, inner products, outer products, norms, and paren-
thesised expressions.

Inner and outer products are introduced as atoms even though they : inner
products require special syntax since the middle | is shared by both the bra and
the ket, hence they cannot be built out of more basic constructs and must be
atoms. In contrast, outer products are syntactically just two atoms put together
(a ket and a bra), but to keep their semantics separate from standard products
we match them lower in the grammar tree, as an atom.

The translation of atoms from algebraic Dirac notation is mostly straightfor-
ward, with |, <, and > being used as delimiters for bra-kets and () for parenthe-
sised expressions.

Norms are delimited by a single vertical bar | on both sides, differently from
the double vertical bars ∥ usually used in standard notation. The reasoning here
is twofold: it is more readable since the kerning between two || characters when
written in mono-space fonts is much larger than in the usual, and when written
next to bras and kets, having more vertical bars makes it easy to conflate them
with the bars from the bras and kets themselves (see Listing 2).

2.2 Complex Numbers

Complex numbers are represented in standard decimal notation, with a real part
and optionally and imaginary part represented by an addition suffixed with i
(see Listing 3).
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<atom> ::= <complex> | <outer> | <inner> | <bra> | <ket> |
<parenthesised> |↪→

<norm>

<outer> ::= "|" <register-state> ">" "<" <register-state> "|"
<inner> ::= "<" <register-state> "|" <register-state> ">"

<bra> ::= "<" <register-state> "|"
<ket> ::= "|" <register-state> ">"

<parenthesised> ::= "(" <add> ")"
<norm> ::= "|" <add> "|"

<qubit-state> ::= "0" | "1" | "+" | "-"
<register-state> ::= <qubit-state> {<qubit-state>}

Listing 2: Grammar for atoms. See Listings 3, 5 for <complex> and <add>.

<complex> ::= <number> [ "+" <number> "i" ]
<number> ::= <digit> {<digit>} [ "." <digit> {<digit>} ]
<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Listing 3: Grammar for complex numbers.

2.3 Unary Operations

There are two kinds of unary operations in Dirac DSL: prefix and postfix. The
postfix conjugate transpose operator, usually written as M† is mapped to ’ here.
The usual prefix additive inverse operator (-) does not need any changes (see
Listing 4).

<dagger> ::= <atom> [ "'" ]
<inverse> ::= [ "-" ] <dagger>

Listing 4: Unary operators. See Listing 2 for <atom>.

2.4 Binary Operations

Binary operations do not require many changes from standard notation, with
one noteworthy exception: the Kronecker product operator ⊗ is represented as
x. This is a small deviation from the standard symbol, but it was chosen for
its simplicity versus alternatives. One caveat to consider is that the equivalent
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Unicode characters U+2297 and U+2A02 are not considered to be valid by the Rust
tokenizer [16] which is implemented according to the Unicode recommendation
for identifiers [5].

Division is also represented with / instead of fractions as is common when
entering expressions in most modern languages.

The lack of any operators is also acceptable in the DSL grammar, which
allows for natural multiplications in algebraic notation, expressed by the optional
<mul-op> (see Listing 5).

<mul-op> ::= "*" | "/" | "x"
<mul> ::= <inverse> {[ <mul-op> ] <inverse>}

<add-op> ::= "+" | "-"
<add> ::= <mul> {<add-op> <mul>}

Listing 5: Binary operations grammar. See Listing 4 for <inverse>

2.5 Expressions

A full expression is simply an additive expression <add> since it is the topmost
node in the grammar tree.

2.6 White-space Handling

The EBNF grammar we defined requires the whole expression to be written
down without any white space between symbols from start to finish. The actual
implemented parser works around this limitation by simply allowing terminals
to consume trailing and leading white spaces.

3 Implementation

The dirac! procedural macro is used as an entry point to the DSL:

let state = dirac!(/* DSL */ );

Statements in Dirac DSL are passed in to the macro and the result is expected
to be the tensor obtained after executing the expression.

There are two implementations of the dirac! macro with slightly different
use cases: dirac! and xdirac!. The former produces the final output tensor
using only standard Rust types, and as such does not require any custom runtime
code. However, it might be cumbersome to use it, given most use cases would
require further operations on the output tensor to perform the actual runtime
calculations required for the simulation. This implies that the usage would be
more similar to:
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let state = to_runtime_tensor(dirac!(/* DSL */ ));

The xdirac! macro (x for extensible) solves this issue by allowing the macro
user to plug in the conversion function using a custom trait instead of inserting
it on every macro call.

Serialization

Parsing

Parsing
Rust Token Stream AST

Interpreter

Execution

Tensor LibraryAST Tensor

Serialization

Runtime Interface

TokenizationTensor Rust Token Steam

Fig. 1. The dirac! macro takes in a stream of tokens and ultimately also produces
a stream of tokens. However, the intermediary processing of those streams involve
converting to strings, generating a syntax tree and executing the syntax tree to produce
a complex vector representing the initialised register state that is finally serialised again.

In Figure 1 we show our approach to the execution of the DSL code inside
the dirac! macro. We take an interpreter-like approach, where we treat the
dirac! macro as an interpreter for the DSL. To properly map the DSL into
the function-like macro paradigm, we implement several intermediary steps to
transform both the input and output between the Rust-native TokenStreams
and other data types more appropriate at each stage of the interpreting process.

1. Input serialisation is the first of those transformations: since the tokens
in our DSL do not map one to one with tokens in the Rust language, we first
de-structure the input into a serialised sequence of bytes.

2. Parsing follows, by mapping the the byte sequence into an AST (Abstract
Syntax Tree).

3. Execution then takes the generated AST and interprets it with the help of
a tensor computation library, producing a final output tensor.

4. Runtime interface again serialises and parses the input back into a Rust
stream of tokens.
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3.1 Parsing

We utilise the nom [4] parsing library to implement our compile-time macros.
After converting the input token stream to a string, it is parsed with nom to
directly generate the syntax tree of the DSL, instead of relying on the Rust
tokenizer or an implementation of thereof such as syn [19]. This single-pass
architecture allows us to both simplify the implementation and also have control
over how individual tokens are defined directly from bytes strings.

The parser implementation uses combinators, the nom terminology for match-
ing functions capable of either matching parameterised by some input or by other
combinators. For example, the ws (white space) combinator matches another
combinator and leading or trailing white spaces, and hence can help construct
white-space-agnostic parsers.

By implementing the language as described in Section 2, the parser outputs
a syntax tree defined a recursive enum:

enum Expression {
Scalar(Complex64),

Bra(Tensor),
Ket(Tensor),

AdditiveInverse(Box<Expression>),
Dagger(Box<Expression>),

Mul(Box<Expression>, Box<Expression>),
Div(Box<Expression>, Box<Expression>),
Add(Box<Expression>, Box<Expression>),
Sub(Box<Expression>, Box<Expression>),
Kronecker(Box<Expression>, Box<Expression>),

Inner(Box<Expression>, Box<Expression>),
Outer(Tensor, Tensor),

Parenthesised(Box<Expression>),
Norm(Box<Expression>),

}

Every language construct is mapped to one or more enum variants, which
allows the interpreter to be implemented by recursively pattern matching on
Expression.

3.2 Interpreting

There are two components to the language interpreter: the interpreter evaluation
function itself and the supporting tensor library which executes the computa-
tions.
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Tensor Computations The supporting tensor library is focused specifically
on supporting the kinds of operations needed for the language, as defined in
Subsection 1.1. It is implemented as a Tensor type with a suite of impl Tensor
functions and a few trait implementations for common operations where it maps
well to Rust’s standard operator traits.

The Tensor type is implemented as a struct:

struct Tensor {
data : Vec<Complex64>,
shape : (usize , usize )

}

Interpreter The interpreter is implemented as a function in impl Expression,
where Expression is the expression enumeration defined in Subsection 3.1. It
maps each of the variants into an operation for the supporting tensor library:

1. Scalar maps to a rank-0 tensor.
2. Bra maps to the conjugate transpose of its inner tensor.
3. Ket maps to its inner tensor.
4. Outer maps to the outer product of its inner tensors.
5. All other operations map to their recursively evaluated inner expressions and

execute the operation afterwards.

3.3 Interfacing Compile-time and Runtime

The final output from the dirac! macro is a literal representation of the com-
puted state tensor. It is defined a s fully static type built directly from Rust’s
native types. This allows the runtime to utilise the output tensor data without
needing to include any runtime libraries:

type StaticTensor = ((usize , usize ), &'static [(f64 , f64 )]);

In most cases we want to perform some computation on this state, with the
help of some runtime tensor library. To support this use case, the xdirac! macro
outputs the same static literal representation but also calls the to_tensor()
function on it. This will cause an error at runtime because StaticTensor is
a tuple type that does not implement any traits containing the to_tensor()
function.

However, if the runtime does implement a trait with the to_tensor() func-
tion, it can use that to automatically convert the result of all xdirac! calls into
any type, as defined by the trait.

trait ToTensor {
fn to_tensor(&self) -> RuntimeTensorType;

}

impl ToTensor for StaticTensor { /* ... */ }
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This enables the runtime to support virtually any tensor library with minimal
effort when using the xdirac! macro.

The standard std::convert::From trait was also considered as an extensi-
bility option, but it would require the tensor libraries themselves to implement
the trait, which is not desired since it would only allow the macro to be used
with a pre-selected set of tensor libraries that do implement it.

4 Performance
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Compile time (no copy)
Compile time
Runtime

Fig. 2. Calculating the |0 . . . ⟩ state for n qubits with dirac!, xdirac! and at runtime.

One of the advantages of using compile-time macros to prepare quantum
states is that it allows the pre-computation of those states, reducing run time
by caching those values directly in the binary generated by the Rust compiler.

To measure the impact caching has in state preparation, we ran a series
of experiments calculating the Kronecker product of an increasing number of
qubits from 1 to 10 in the |0⟩ state, generating a final n-qubit |0 . . . ⟩ state. Each
experiment runs for 5 seconds continuously and 100 random execution times are
sampled and averaged to produce the final runtime.

In Figure 2 we plot the results for the computation of the n-qubit states
at runtime, compile time with xdirac! and making copies of the generated
tensors at runtime and a baseline O(1) benchmark with dirac! without doing
any copies.
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5 Conclusions

We explored the design and implementation of Dirac DSL, a small domain spe-
cific language that closely resembles the Dirac notation widely used in quantum
mechanics literature and research. Through this exploration we found which no-
tation constructs are cumbersome to translate to a streamlined syntax and how
we can balance readability with ease of use.

We also found that the integration of Dirac DSL with multiple tensor com-
putation libraries during runtime can be made trivial with the intentional use
of user defined traits. Additionally, we show the performance improvements of
using Dirac DSL can be substantial depending on the complexity and size of the
static prepared states.

Hardware acceleration of compile time tensor calculations and benchmarking
techniques for compile time macros are both interesting areas for future works.
Expanding the language to support arbitrary operators is another unexplored
direction.
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